

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

A critical role of $SNF1A/dAMPK\alpha$ (Drosophila AMP-activated protein kinase α) in muscle on longevity and stress resistance in Drosophila melanogaster

Daisuke Tohyama, Atsushi Yamaguchi*

Department of Neurobiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan

ARTICLE INFO

Article history: Received 10 February 2010 Available online 23 February 2010

Keywords: AMPK Longevity Stress resistance Drosophila melanogaster

ABSTRACT

Energy homeostasis and stress resistance are closely linked on aging and longevity. AMPK (AMP-activated protein kinase) is a sensor of cellular energy status activated by metabolic stress that accelerates AMP/ATP ratio, regulating cell polarity, metabolic homeostasis and sensitivity to stress resistance. AMPK could be therapeutic targets for cancer, diabetic mellitus and obesity, providing a possible link to metabolic syndrome. However, little is known how functional deficiency of AMPK affects longevity and stress resistance in vivo due to its redundancy and lethality in null-mutant. SNF1A/dAMPK α (CG3051) is a single orthologue for its mammalian counterparts in Drosophila melanogaster. Using time- and tissue-specific RNAi system in D. melanogaster, we found that adult-onset inhibition of dAMPK α especially in muscle shortens lifespan. In addition, inhibition of dAMPK α in muscle enhances sensitivity to paraquat and starvation stress. Real-time PCR analysis showed that inhibition of dAMPK α in muscle affected the transcriptional regulation of various genes in response to starvation. These results raise the possibility that muscle is one of major tissues in which AMPK plays a critical role on longevity and stress resistance and the intervention to activate AMPK in muscle could be a prominent treatment strategy for longevity.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

AMPK (AMP-activated protein kinase) is AMP-activated serine/ threonine kinase conserved across species, playing a crucial role in systemic and cellular energy homeostasis through balancing anabolism and catabolism. AMPK is a heterotrimeric enzyme complex consisting of a catalytic subunit α and two regulatory subunits β and γ , and exerts functions as an energy gauge through modulating downstream effectors via phosphorylation in response to AMP/ ATP ratio [1]. The three subunits of the kinase have a similar domain structure in all eukaryotes [2]. Since each subunit has numerous variants that are possibly redundant [3], little is known how AMPK affects longevity and stress resistance in whole organism. Drosophila melanogaster SNF1A/dAMPK α (CG3051), a catalytic subunit of dAMPK, is a single orthologue for its mammalian and yeast counterparts [4]. Deletion of this gene in *D. melanogaster* results in lethality with severe abnormalities in cell polarity and mitosis [4].

Excess nutrients could lead to metabolic diseases such as obesity and diabetes, resulting in shorter lifespan [5]. Recently AMPK is recognized as a therapeutic target for these diseases and called "metabolic master switch", influencing various metabolic pathways including carbohydrate metabolism, lipid metabolism and protein synthesis [6].

Metabolic changes often influence lifespan in model organisms such as *Saccharomyces cerevisiae*, *Caenorhabditis elegans*, *D. melanogaster* and rodents. For instance dietary restriction (DR), which is restriction of food intake without malfunction, extends lifespan in these model organisms [7–10]. Inhibition of the TOR pathway by genetic or pharmacological intervention extends lifespan across species including mouse [11,12]. Further inhibition of mRNA translation which leads to suppression of global protein synthesis shows lifespan extension in *C. elegans* [13,14].

Accumulating evidences have revealed a strong correlation between lifespan extension and resistance to environmental stress [15]. While most genetic mutations that extend lifespan confer stress resistance, many genetic mutations that enhance stress resistance result in lifespan extension [16]. Environmental stressor such as a high-temperature pulse that increases the AMP/ATP ratio extends lifespan in C. elegans [17]. aak-2, one of C. elegans AMPKα homologs, functions to mediate the lifespan extension of daf-2/Insulin-like receptor mutants in parallel to daf-16/FOXO, conserved forkhead transcription factor involved in aging and longevity [17]. However, it remains obscure whether AMPK affects longevity across species or which tissues are important for AMPK on longevity and stress resistance in vivo. To circumvent the lethality of null-mutant in D. melanogaster [4], we examined the spatiotemporal influences of RNAi-mediated knock-down for $dAMPK\alpha$ on lifespan and stress resistance using well-established GAL4/UAS system [18] and spatiotemporal targeting gene expression system GeneSwitch [19].

^{*} Corresponding author. Fax: +81 43 226 2025. E-mail address: atsyama@restaff.chiba-u.jp (A. Yamaguchi).

2. Materials and methods

2.1. Drosophila strains and maintenance

 w^{1118} , C564-GAL4(w[1118];P{w[+mW.hs]=GawB}c564), da-GAL4 (P{GAL4-da.G32}UH1), elav-GAL4(P{GAL4-elav.L}2), 24B-GAL4(P{w+mW.hs=GawB}24B), Act5c-GS(P{Act5C(-FRT)GAL4.Switch.PR}3), S106-GS (P{Switch1}106) were all obtained from Drosophila Stock Center (Bloomington, IN). Drosophila transgenic RNAi line for CG3051 (UAS- $dAMPK\alpha^{RNAi}$) was obtained from Vienne Drosophila Resource Center (Transformant ID #1827). MHC-GS and elav-GS line were kindly provided by Dr. Haig Keshishian (Yale University). The Drosophila strain w^{1118} was used in all control crosses and as the background for generation of transgenic lines. All flies were raised on a standard mixture of agar, cornmeal, sucrose and yeast at 25 °C.

2.2. Lifespan assay

Crosses were set up between 10 virgin females and 20 males of various strains. Progeny were collected for 2-4 days after adult emergence by separating males and females under a brief (<2 min) carbon dioxide anesthesia, and transferred into fresh vials containing 2% agar, 10% yeast and 10% sucrose and maintained at 25 °C. For each lifespan experiment, 10–30 flies were put in a single vial. They were transferred into fresh vials within 4 days and survival rates were scored. In this system, expression of UAS-transgenes can be induced by feeding with RU486. For the induction of RNAi, 50 µg/ml RU486 (Mifepristone, Sigma-Aldrich) in 60% ethanol was added to the food (RU+) while the controls received the vehicle (RU-). F1 males and females were examined for their lifespan. Survival curves were analyzed with the Graphpad Prism 4 software, yielding p values for a log-rank test. All log-rank test p values are calculated to compare the lifespans; RU486 (RU+) vs vehicle (RU-) in the case of GeneSwitch system; the over-expressor strain vs the driver or transgenic line alone in the case of GAL4/ UAS system.

2.3. Stress resistance assay

Newly eclosed flies were collected on the standard medium containing 2% agar, 10% yeast and 10% sucrose. Ten to 30 flies were put in a single vial. In the case of GeneSwitch system, flies were maintained with 50 μ g/ml RU486 (Mifepristone, Sigma–Aldrich) in 60% ethanol for 5 days, while the controls received the vehicle (RU–) for 5 days. *Oxidative stress*: For oxidative stress assays, paraquat (*N*,*N*'-dimethyl-4,4'-bipyridinium dichloride) was used to induce oxidative stress. Flies were transferred into new vials containing a filter paper with a solution of 20 mM paraquat in 1% sucrose and examined for their survival within every 12 h. *Starvation stress*: Flies were transferred into new vials containing 1% agar and checked for their survival within every 12 h. Each experiment was repeated at least twice.

2.4. Real-time polymerase chain reaction (PCR) analysis

Newly eclosed flies were maintained at 25 °C in new food vials containing 2% agar, 10% yeast and 10% sucrose for 4 days. For the induction of RNAi, 50 μ g/ml RU486 in 60% ethanol was added to the food (RU+) while the controls received the vehicle (RU-) for 5 days. Total RNA was extracted from 10 male flies by using TRIZOL (Invitrogen). Extracted RNA was used for synthesis of cDNA by using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Real-time PCR was performed using SYBR Green PCR Master Mix (Applied Biosystems) and ABI 7300 real-time PCR system (Applied Biosystems), and relative levels were assessed using

the $\Delta\Delta C_t$ method according to the manufacturer's protocol. mRNA level of RP49(RpL32, CG7939) was used for normalization. Primer sequences were designed using Primer ExpressSoftware v3.0 (Applied Biosystems).

3. Results

3.1. Effect of dAMPK\u03e1 on longevity in a tissue-specific manner

To investigate the effects of AMPK on longevity *in vivo*, we used *D. melanogaster*, one of well-established model organisms for aging/longevity research. *Drosophila SNF1A/dAMPK* α (*CG3051*), a catalytic subunit of AMPK, is a single orthologue for mammalian and yeast counterparts [4]. The deletion in this gene leads to lethality before the mid-pupal stage [4]. To circumvent this, we obtained a *Drosophila* transgenic RNAi line for $dAMPK\alpha$ ($UAS-dAMPK\alpha^{RNAi}$) from Vienne Drosophila Resource Center. This line carries the transgene constructed by cloning the fragment of $dAMPK\alpha$ as inverted repeats (IRs) into a modified pUAST vector, which drives the expression of a hairpin RNA of $dAMPK\alpha$ depending on GAL4 [20] Crossing $UAS-dAMPK\alpha^{RNAi}$ line with various tissue-specific *GAL4* drivers, we can perform RNAi-mediated knock-down in a tissue-specific manner.

We first test the efficacy of RNA knock-down of $dAMPK\alpha$ in our system. UAS- $dAMPK\alpha^{RNAi}$ line was crossed with daughterless-GAL4 (da-GAL4) driver, a ubiquitous expressed driver line. In consistent with the phenotype of $dAMPK\alpha$ null-mutant previously reported [4], da-GAL4/UAS- $dAMPK\alpha^{RNAi}$ animals were lethal during pupal stage (Fig. 1A). To further examine the extent of RNAi knock-down of $dAMPK\alpha$, we performed a real-time PCR assay preparing total RNA from third instar larvae of da-GAL4/UAS- $dAMPK\alpha^{RNAi}$ and controls (da-GAL4/+ and +/UAS- $dAMPK\alpha^{RNAi}$) (The plus symbol indicates the parental strain w^{1118}). Expression levels of $dAMPK\alpha$ mRNA in da-GAL4/UAS- $dAMPK\alpha^{RNAi}$ animals were reduced to approximately 20% of corresponding controls (Fig. 1B) (relative expression level of $dAMPK\alpha$ mRNA; da-GAL4/+, 1; +/UAS- $dAMPK\alpha^{RNAi}$, 0.82 ± 0.21; da-GAL4/UAS- $dAMPK\alpha^{RNAi}$, 0.19 ± 0.03).

We then investigated the effects of RNAi-mediated knock-down for $dAMPK\alpha$ on longevity using various tissue-specific drivers. We crossed UAS-dAMPK\(\alpha^{RNAi}\) line with three drivers (24B-GAL4, C564-GAL4 and elev-GAL4), enhancer traps that are predominantly expressed in muscle, fat body and neuron, respectively [21,22]. All of these crossed lines were viable and showed no visible phenotype. Among them, 24B-GAL4/UAS-dAMPK α^{RNAi} animals resulted in extremely significant shorter lifespan (approximately 90% reduction of mean lifespan compared with controls) (Fig. 1C and D) Imean lifespan (male); 24B-GAL4/+, 48 d (n = 153); +/UAS-dAMP- $K\alpha^{RNAi}$, 56.1 d (n = 120), 24B-GAL4/UAS-dAMPK α^{RNAi} , 5.4 d (n = 47); log-rank test p < 0.0001] [mean lifespan (female); 24B-GAL4/+, 74.1 d (n = 132); +/UAS-dAMPK α^{RNAi} , 69.0 d (n = 137), 24B-GAL4/ UAS- $dAMPK\alpha^{RNAi}$, 5.9 d (n = 167); log-rank test p < 0.0001]. Since 24B-GAL4 is an enhancer-trap line expressing GAL4 in all embryonic and larval somatic muscles [23], we cannot rule out the possibility that $dAMPK\alpha$ in muscle during development could play a critical role on longevity. RNA knock-down of dAMPKα using neuron-specific elav-GAL4 driver did not remarkably shorten mean lifespan (4% reduction of mean lifespan compared with +/elav-GAL4) (Fig. 1E) [mean lifespan (male); elav-GAL4/+ male, 63.1 d (n = 45); +/UAS-dAMPK α^{RNAi} male, 56.1 d (n = 120), elav-GAL4/UAS $dAMPK\alpha^{RNAi}$ male, 60.7 d (n = 79), log-rank test p = 0.0330]. Further RNA knock-down of dAMPKα using fat body-specific C564-GAL4 driver had no significant effect on male mean lifespan (Fig. 1F) [mean lifespan (male); C564-GAL4/+, 49.5 d (n = 125); +/UAS-dAMP- $K\alpha^{RNAi}$, 56.1 d (n = 120), C564-GAL4/UAS-dAMP $K\alpha^{RNAi}$, 60.7 d (n = 45), log-rank test p = 0.3811].

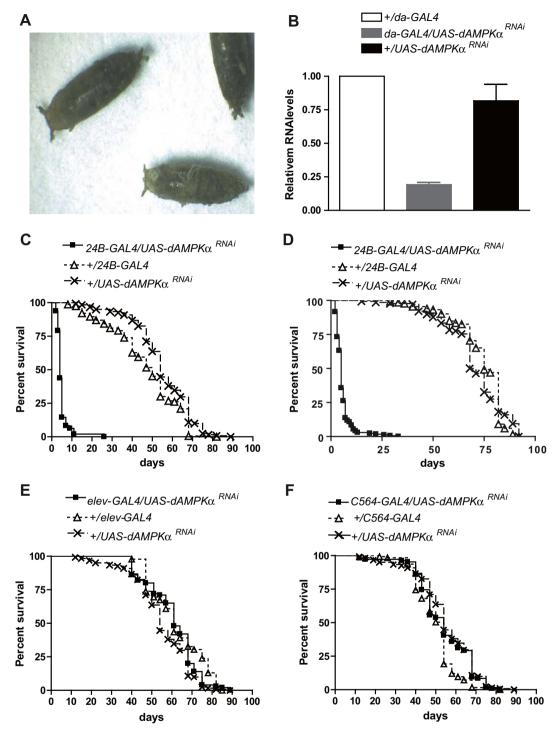


Fig. 1. $dAMPK\alpha$ RNAi in muscle shortens lifespan. (A) Representative image of developmental lethality during pupal stage in da-GAL4/UAS- $dAMPK\alpha^{RNAi}$ line. (B) Real-time PCR was performed to quantify the relative level of $AMPK\alpha$ transcript using total RNA from third instar larvae of da-GAL4/+, UAS- $dAMPK\alpha^{RNAi}/+$ or da-GAL4/UAS- $dAMPK\alpha^{RNAi}$ animals. Mean and standard deviation of the relative $dAMPK\alpha/RP49$ ratios based on two independent trials are shown. In each trial, biological duplicate samples were assayed. Survival curves for 24B-GAL4/+ (open triangles), +/UAS- $dAMPK\alpha^{RNAi}$ (crosses) or 24B-GAL4/UAS- $dAMPK\alpha^{RNAi}$ (closed squares) [(C) male, (D) female]. (E) Male survival curves for elav-GAL4/UAS- $dAMPK\alpha^{RNAi}$ (crosses) or elav-GAL4/UAS- $elamPK\alpha^{RNAi}$ (closed squares). (F) Male survival curves for C564- $elamPK\alpha^{RNAi}$ (closed squares).

3.2. Adult-onset inhibition of dAMPK α in muscle shortens lifespan

The GeneSwitch system is a powerful tool allowing us to perform time- and tissue-specific transgene expression in *Drosophila* [19]. Since this system uses conditional RU486 (mifepristone)-dependent GAL4 protein (GeneSwitch), we can activate GAL4 protein on the application of RU486 to perform adult-onset RNAi for

 $dAMPK\alpha$. We first tested the efficacy of GeneSwitch (GS)-mediated RNAi using ubiquitously expressed GS driver (Act5c-GS). Crossing UAS- $dAMPK\alpha$ ^{RNAi} line with Act5c-GS driver, adult-onset RNAi was initiated by transferring adult Act5c-GS/UAS- $dAMPK\alpha$ ^{RNAi} flies onto food with RU486. Five days treatment with RU486 resulted in approximately 50% reduction of $dAMPK\alpha$ mRNA level in adult Act5c-GS/UAS- $dAMPK\alpha$ ^{RNAi} flies compared with control (Fig. 2A)

(relative expression level of $dAMPK\alpha$ in Act5c-GS/UAS- $dAMPK\alpha^{RNAi}$; RU (-), 1; RU (+), 0.55 ± 0.0018).

We then investigated which tissue is crucial during adulthood for $dAMPK\alpha$ on longevity using three tissue-specific GS drivers (muscle-specific MHC-GS, neuron-specific elav-GS and adult fat body-specific S106-GS). As in Fig. 2B and C, adult-onset inhibition of $dAMPK\alpha$ in muscle (MHC-GS/UAS- $dAMPK\alpha$ ^{RNAi}) resulted in significant shorter lifespan (approximately 20–40% reduction of mean lifespan compared with controls) [mean lifespan of MHC-GS/UAS- $dAMPK\alpha$ ^{RNAi}(male); RU (-), 45.3 d (n = 159), RU (+), 26 d (n = 150); log-rank test p < 0.0001] [(female); RU (-), 41.7 d (n = 139), RU (+), 32.5 d (n = 140); log-rank test p < 0.0001]. In contrast, adult-onset inhibition of $dAMPK\alpha$ in neuron (elav-GS) or fat body

(S106-GS) had no significant effect on male lifespan (Fig. 2D and E). To rule out the possibility that RU486 affects longevity, we confirmed that RU486 had no effect on the lifespan of MHC-GS/+ line (Supplemental Fig. 1). In contrast RU486 had a toxic effect on the lifespan of Act5c-GS/+ line (data not shown), we therefore did not perform lifespan assay on Act5c-GS/UAS-dAMPK α ^{RNA} line.

3.3. Effect of dAMPKa RNAi in muscle on stress resistance

Since RNAi inhibition of $dAMPK\alpha$ especially in muscle shortens lifespan, we then examined whether this effect is linked to stress resistance. Inhibition of $dAMPK\alpha$ in muscle (24B-GAL4/UAS-dAMP- $K\alpha^{RNAi}$) significantly increased sensitivity to paraquat in female flies

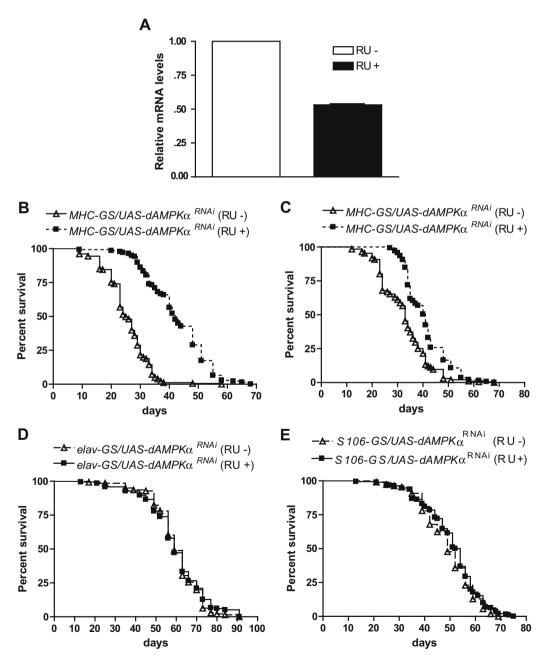
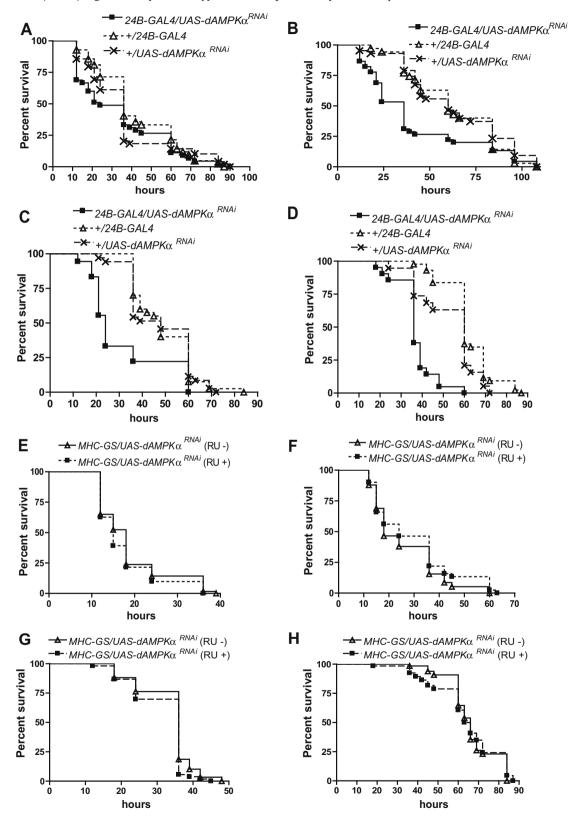



Fig. 2. Adult-onset inhibition of $dAMPK\alpha$ in muscle shortens lifespan (GeneSwitch system). (A) Real-time PCR assay was performed to quantify the relative level of $dAMPK\alpha$ transcripts preparing total RNA from male Act5c-CS/UAS- $dAMPK\alpha^{RNAi}$ flies in the presence (RU+) or absence (RU-) of RU486 for 5 days. Mean and standard deviation of the relative $dAMPK\alpha/RP49$ ratios based on two independent trials are shown. In each trial, biological duplicate samples were assayed. Survival curves for MHC-CS/UAS

(Fig. 3A and B) [mean viability on paraquat (male); 24B-GAL4/+, 36.3 h (n = 49); +/UAS- $dAMPK\alpha^{RNAi}$, 40.0 h (n = 42), 24B-GAL4/UAS- $dAMPK\alpha^{RNAi}$, 34.1 h (n = 45); log-rank test p = 0.5071] [mean viability

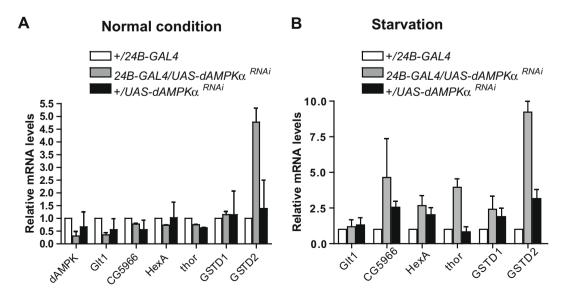
on paraquat (female); 24B-GAL4/+, 63.0 h (n = 43); +/UAS- $dAMPK\alpha^{RNAi}$, 63.3 h (n = 40), 24B-GAL4/UAS- $dAMPK\alpha^{RNAi}$, 31.2 h (n = 18); log-rank test p = 0.01657]. Further inhibition of $dAMPK\alpha$ in muscle (24B-

Fig. 3. RNAi-mediated knock-down of $dAMPK\alpha$ in muscle increases sensitivity to stresses. (A,B) Survival curves on paraquat challenge. 24B-GAL4/UAS- $dAMPK\alpha^{RNAi}$ flies and their genetically matched controls were exposed to paraquat [(A) male, (B) female]. (C,D) Survival curves on starvation challenge. 24B-GAL4/UAS- $dAMPK\alpha^{RNAi}$ flies and their genetically matched controls were exposed to starvation [(C) male, (D) female]. (E,F) Survival curves on paraquat challenge. Adult MHC-GS/UAS- $dAMPK\alpha^{RNAi}$ flies were exposed to paraquat after the treatment with RU486 (RU+) or mock (RU−) for 5 days [(E) male, (F) female]. (G,H) Survival curves on starvation challenge. Adult MHC-GS/UAS- $dAMPK\alpha^{RNAi}$ flies were exposed to starvation after the treatment with RU486 (RU+) or mock (RU−) for 5 days [(G) male, (H) female].

 $GAL4/UAS-dAMPK\alpha^{RNAi}$) significantly increased sensitivity to starvation (Fig. 3C and D) [mean viability on starvation (male); 24B-GAL4/+, 47.8 h (n = 35); +/UAS-dAMPK α^{RNAi} , 49.3 h (n = 40), 24B-GAL4/ UAS- $dAMPK\alpha^{RNAi}$, 31.2 h (n = 18); log-rank test p = 0.0049] [mean viability on starvation (female); 24B-GAL4/+, 52.8 h (n = 19); +/UAS- $dAMPK\alpha^{RNAi}$, 61.8 h (n = 43), 24B-GAL4/UAS- $dAMPK\alpha^{RNAi}$, 36.8 h (n = 42); log-rank test p < 0.0001]. Next we tested whether adult-onset inhibition of $dAMPK\alpha$ affects sensitivity to stress resistance. Crossing UAS-dAMPK α^{RNAi} line with MHC-GS driver, adult-onset RNAi was initiated by transferring adult MHC-GS/UAS $dAMPK\alpha^{RNAi}$ flies onto food with RU486. In contrast to the results in 24B-GAL4/UAS-dAMPK α^{RNAi} , adult-onset inhibition of dAMPK α had no effect on sensitivity to paraquat (Fig. 3E and F) and starvation (Fig. 3G and H). Taken together, these results suggest that inhibition of $dAMPK\alpha$ in muscle during development could have more effects on the sensitivity to stressors as well as on longevity.

3.4. Effect of dAMPK α RNAi in muscle on the transcriptional regulation in response to stress

Mammalian muscle has the ability to adapt to exercise training by up-regulating metabolic enzymes and mitochondria content, a part of these adaptations in protein expression results from a transient increases in transcription on exercise [24]. Activated AMPK influences metabolic pathways including carbohydrate metabolism, lipid metabolism and protein synthesis. In addition, AMPK is activated in response to environmental stressor that increases the AMP/ATP ratio in *C. elegans* [17].


We then investigated whether inhibition of $dAMPK\alpha$ in muscle affects the transcriptional regulation of the genes by real-time PCR assay, including stress resistant genes [GSTD1(glutathione S-transferases 1), GSTD2(glutathione S-transferases 2), hsp68, sod1, catalase, l(2)efi (small heat-shock protein), fer1(ferritin subunit)] and metabolic genes [Glt1(glucose transporter), CG5966(triacylglycerol lipase), HexA(Hexokinase-A), thor(4E-BP)]. UAS-dAMPK α^{RNAi} , 24B-GAL4 or w^{1118} flies were crossed with each other, and progeny of 24B-GAL4/+, +/UAS-dAMPK α^{RNAi} or 24B-GAL4/UAS-dAMPK α^{RNAi} were exposed to starvation. We prepared total RNA from male animals in normal or starvation condition. As in Fig. 4A and B, inhibition of dAMPK α in muscle (24B-GAL4/UAS-dAMPK α^{RNAi}) remarkably affected

the transcriptional regulation of several genes in response to starvation, including CG5966, GSTD2 and thor compared with corresponding controls (24B-GAL4/+ and +/UAS-dAMPK α^{RNAi}). [CG5966 relative expression level in starvation; 24B-GAL4/+, 1; +/UAS-dAMPK α^{RNAi} , 2.55 ± 0.41; 24B-GAL4/UAS-dAMPK α^{RNAi} , 4.64 ± 2.72] [GSTD2 relative expression level in starvation; 24B-GAL4/+, 1; +/UAS-dAMPK α^{RNAi} , 3.15 ± 0.64; 24B-GAL4/UAS-dAMPK α^{RNAi} , 9.22 ± 0.75] [thor relative expression level in starvation; 24B-GAL4/+, 1; +/UAS-dAMPK α^{RNAi} , 0.83 ± 0.34; 24B-GAL4/UAS-dAMPK α^{RNAi} , 3.95 ± 0.59].

4. Discussion

This study shows that adult-onset inhibition of $dAMPK\alpha$ especially in muscle shortens lifespan. Inhibition of $dAMPK\alpha$ in muscle enhances sensitivity to paraquat and starvation stress. Further this affected the transcriptional regulation of various genes in response to starvation. These results shed a light on muscle as one of major tissues in which dAMPK could play a pivotal role on longevity and stress resistance.

What is the physiological significance of AMPK in muscle on longevity and stress resistance? As described above, mammalian muscle adapts to exercise by up-regulating metabolic enzymes and mitochondria content, a part of these adaptations result from a transcriptional increases on exercise. AMPK is activated in response to endurance exercise in skeletal muscle [24]. AMPKα2-isoform translocates to the nucleus in human skeletal muscle in response to exercise [25], supporting that AMPK has been suggested as a molecule to transmit a signal into the nucleus on exercise [25]. In fact, AMPK inactivation in muscle exerts an impact on gene expression leading to changes in the transcription of many genes, including energy metabolism and intracellular signaling in mouse [26]. Further mice expressing mutant AMPK α 2 in muscle showed a decrease of the voluntary activity [26], and are associated with impaired glycogen synthesis in skeletal muscle [27]. In addition, an elevated metabolic rate as a result of exercise can dramatically increase oxygen consumption in muscle as well as other tissues [28]; exercise may cause oxidative stress and tissue damage in muscle [28], including free radical generation [28], increases in oxidative damage biomarkers [29] and mitochondrial dysfunction [29,30]. Therefore, inhibition of AMPK activity in muscle could dis-

rupt the energy homeostasis as well as stress-resistant systems especially to oxidative stress, leading to shorter lifespan across species.

One of possible key players in AMPK-mediated effects on longevity and stress resistance is forkhead transcriptional factor FOXO [31]. FOXO is thought to mediate longevity promoting signals by trans-activating genes involved in stress resistances [32]. Since activation of AMPK modulates the transcriptional activity of FOXO through direct phosphorylation [31,33], it is possible AMPK activation in muscle could enhance a gene expression program to induce cellular stress resistance and longevity through FOXO.

In summary, this study showed that muscle could be one of tissues in which AMPK plays a pivotal role on longevity and stress resistances. These results would support the idea that intervention to activate AMPK in muscle could be a prominent treatment strategy for longevity.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bbrc.2010.02.126.

References

- B.J. Michell, D. Stapleton, K.I. Mitchelhill, C.M. House, F. Katsis, L.A. Witters, B.E. Kemp, Isoform-specific purification and substrate specificity of the 5'-AMPactivated protein kinase, J. Biol. Chem. 271 (1996) 28445–28450.
- [2] D.G. Hardie, S.A. Hawley, J.W. Scott, AMP-activated protein kinase development of the energy sensor concept, J. Physiol. 574 (2006) 7–15.
- [3] D.G. Hardie, K. Sakamoto, AMPK: a key sensor of fuel and energy status in skeletal muscle, Physiology 21 (2006) 48–60.
- [4] J.H. Lee, H. Koh, M. Kim, Y. Kim, S.Y. Lee, R.E. Karess, S.H. Lee, M. Shong, J.M. Kim, J. Kim, J. Chung, Energy-dependent regulation of cell structure by AMP-activated protein kinase, Nature 447 (2007) 1017–1020.
- [5] K.F. Adams, A. Schatzkin, T.B. Harris, V. Kipnis, T. Mouw, R. Ballard-Barbash, A. Hollenbeck, M.F. Leitzmann, Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old, N. Engl. J. Med. 355 (2006) 763–778.
- [6] D.G. Hardie, AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy, Nat. Rev. Mol. Cell Biol. 8 (2007) 774–785.
- [7] C.M. McCay, M.F. Crowell, L.A. Maynard, The effect of retarded growth upon the length of life span and upon the ultimate body size, 1935, Nutrition 5 (1989) 155–171. (Discussion 172).
- [8] B. Lakowski, S. Hekimi, The genetics of caloric restriction in *Caenorhabditis elegans*, Proc. Natl. Acad. Sci. USA 95 (1998) 13091–13096.
- [9] S.J. Lin, P.A. Defossez, L. Guarente, Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae, Science 289 (2000) 2126–2128.
- [10] M.D. Piper, D. Skorupa, L. Partridge, Diet, metabolism and lifespan in Drosophila, Exp. Gerontol. 40 (2005) 857–862.
- [11] M. Kaeberlein, R.W. Powers 3rd, K.K. Steffen, E.A. Westman, D. Hu, N. Dang, E.O. Kerr, K.T. Kirkland, S. Fields, B.K. Kennedy, Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients, Science 310 (2005) 1193–1196.
- [12] D.E. Harrison, R. Strong, Z.D. Sharp, J.F. Nelson, C.M. Astle, K. Flurkey, N.L. Nadon, J.E. Wilkinson, K. Frenkel, C.S. Carter, M. Pahor, M.A. Javors, E.

- Fernandez, R.A. Miller, Rapamycin fed late in life extends lifespan in genetically heterogeneous mice, Nature 460 (2009) 392–395.
- [13] P. Syntichaki, K. Troulinaki, N. Tavernarakis, EIF4E function in somatic cells modulates ageing in *Caenorhabditis elegans*, Nature 445 (2007) 922–926.
- [14] D. Tohyama, A. Yamaguchi, T. Yamashita, Inhibition of a eukaryotic initiation factor (eIF2Bdelta/F11A3.2) during adulthood extends lifespan in Caenorhabditis elegans, FASEB J. 22 (2008) 4327–4337.
- [15] T.B. Kirkwood, Understanding the odd science of aging, Cell 120 (2005) 437-447.
- [16] G.J. Lithgow, G.A. Walker, Stress resistance as a determinate of *C. elegans* lifespan, Mech. Ageing Dev. 123 (2002) 765–771.
- [17] J. Apfeld, G. O'Connor, T. McDonagh, P.S. DiStefano, R. Curtis, The AMPactivated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in *C. elegans*, Genes Dev. 18 (2004) 3004–3009.
- [18] A.H. Brand, N. Perrimon, Targeted gene expression as a means of altering cell fates and generating dominant phenotypes, Development 118 (1993) 401– 415
- [19] T. Osterwalder, K.S. Yoon, B.H. White, H. Keshishian, A conditional tissue-specific transgene expression system using inducible GAL4, Proc. Natl. Acad. Sci. USA 98 (2001) 12596–12601.
- [20] G. Dietzl, D. Chen, F. Schnorrer, K.C. Su, Y. Barinova, M. Fellner, B. Gasser, K. Kinsey, S. Oppel, S. Scheiblauer, A. Couto, V. Marra, K. Keleman, B.J. Dickson, A genome-wide transgenic RNAi library for conditional gene inactivation in *Drosophila*, Nature 448 (2007) 151–156.
- [21] M.C. Wang, D. Bohmann, H. Jasper, JNK signaling confers tolerance to oxidative stress and extends lifespan in *Drosophila*, Dev. Cell 5 (2003) 811–816.
- [22] T. Okamura, H. Shimizu, T. Nagao, R. Ueda, S. Ishii, ATF-2 regulates fat metabolism in *Drosophila*, Mol. Biol. Cell 18 (2007) 1519–1529.
- [23] L. Luo, Y.J. Liao, L.Y. Jan, Y.N. Jan, Distinct morphogenetic functions of similar small GTPases: *Drosophila* Drac1 is involved in axonal outgrowth and myoblast fusion, Genes Dev. 8 (1994) 1787–1802.
- [24] S.B. Jorgensen, J.F. Wojtaszewski, B. Viollet, F. Andreelli, J.B. Birk, Y. Hellsten, P. Schjerling, S. Vaulont, P.D. Neufer, E.A. Richter, H. Pilegaard, Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle, FASEB J. 19 (2005) 1146–1148.
- [25] S.L. McGee, K.F. Howlett, R.L. Starkie, D. Cameron-Smith, B.E. Kemp, M. Hargreaves, Exercise increases nuclear AMPK alpha2 in human skeletal muscle, Diabetes 52 (2003) 926–928.
- [26] J. Mu, E.R. Barton, M.J. Birnbaum, Selective suppression of AMP-activated protein kinase in skeletal muscle: update on 'lazy mice', Biochem. Soc. Trans. 31 (2003) 236–241.
- [27] B.R. Barnes, S. Marklund, T.L. Steiler, M. Walter, G. Hjalm, V. Amarger, M. Mahlapuu, Y. Leng, C. Johansson, D. Galuska, K. Lindgren, M. Abrink, D. Stapleton, J.R. Zierath, L. Andersson, The 5'-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle, J. Biol. Chem. 279 (2004) 38441–38447.
- [28] S. Di Meo, P. Venditti, Mitochondria in exercise-induced oxidative stress, Biol. Signals Recept. 10 (2001) 125–140.
- [29] C.K. Sen, M. Atalay, O. Hanninen, Exercise-induced oxidative stress: glutathione supplementation and deficiency, J. Appl. Physiol. 77 (1994) 2177–2187.
- [30] L. Sun, W. Shen, Z. Liu, S. Guan, J. Liu, S. Ding, Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of mitochondrial targeting nutrients, Life Sci. 86 (2010) 39–44.
- [31] E.L. Greer, D. Dowlatshahi, M.R. Banko, J. Villen, K. Hoang, D. Blanchard, S.P. Gygi, A. Brunet, An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans, Curr. Biol. 17 (2007) 1646–1656.
- [32] Y. Wang, H.A. Tissenbaum, Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO, Mech. Ageing Dev. 127 (2006) 48-56.
- [33] E.L. Greer, P.R. Oskoui, M.R. Banko, J.M. Maniar, M.P. Gygi, S.P. Gygi, A. Brunet, The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor, J. Biol. Chem. 282 (2007) 30107–30119.